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Incompressible moderate-Reynolds-number flow in periodically grooved channels is 
investigated by direct numerical simulation using the spectral element method. For 
Reynolds numbers less than a critical value R, the flow is found to approach a stable 
steady state, comprising an ‘outer’ channel flow, a shear layer at the groove lip, and 
a weak re-circulating vortex in the groove proper. The linear stability of this flow 
is then analysed, and it is found that the least stable modes closely resemble 
Tollmien-Schlichting channel waves, forced by Kelvin-Helmholtz shear-layer in- 
stability at the cavity edge. A theory for frequency prediction based on the Orr- 
Sommerfeld dispersion relation is presented, and verified by variation of the 
geometric parameters of the problem. The accuracy of the theory. and the fact that 
it predicts many qualitative features of low-speed groove experiments, suggests that 
the frequency-selection process in these flows is largely governed by the outer, more 
stable flow (here a channel), in contrast to most current theories based solely on 
shear-layer considerations. The instability of the linear mode for R > R, is shown 
to result in self-sustained flow oscillations (at frequencies only slightly shifted from 
the originating linear modes), which again resemble (finite-amplitude) Tollmien- 
Schlichting modes driven by an unstable groove vortex sheet. Analysis of the 
amplitude dependence of the oscillations on degree of criticality reveals the transition 
to oscillatory flow to be a regular Hopf bifurcation. 

1. Introduction 
Flow over grooves and in grooved channels arises in a large number of important 

engineering applications. Examplcs range from high-speed phenomena such as noise 
generation and buffeting due to flow over airframe cutouts (e.g. Karachmeti 1956). 
to low-speed applications such as coolant flow over electronic devices and circuit 
boards (e.g. Arvizu & Moffatt 1982). In addition to any direct practical import, groove 
flows serve as a simple, yet rich, example of separated flow, in which the complex 
interactions of separated vortices, free shear layers, and driving wall-bounded shear 
flows can be examinod in some detail. 

The most noticeable feature of experiments on low-speed boundary-layer flows over 
grooves is thc cxistencc of largc-amplitude self-sustained oscillations (Reihman 1967 ; 
Sarohia 1977). The critical Reynolds number for the onset of unsteadiness. as well 
as thc frcqucncy of the resulting oscillations. is found to bc a strong function of the 
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geometric parameters of the problem. It is clear from the available experimental 
evidence that these low-speed oscillations are the result of a hydrodynamic instability 
of the cavity shear layer, and not of an acoustic resonance phenomenon. 

Analytical attempts to predict and understand the occurrence and frequency of 
incompressible groove oscillations have not been overly successful. In  particular, 
vortex-sheet methods, although ostensibly physically appropriate, have proved to  be 
of limited utility owing to  indeterminatc singularities a t  separation and re-attachment 
(e.g. Durbin 1984). Furthermore, most numerical work on incompressible flow over 
grooves (Pan & Acrivos 1967; Metha & Lavan 1969; Gatski & Grosch 1984), although 
providing insight into separated flows, has been a t  too low a Reynolds number to 
reproduce the experimentally observed self-sustained oscillations. In summary, there 
is, to  date, a very incomplete understanding of hydrodynamic instability and 
subsequent nonlinear oscillation in incompressible separated flows in groove and 
related geometries. 

It should be noted that groove oscillations are just one example of the much more 
general phenomenon of self-sustained oscillations in separated flows (for a review see 
Rockwell & Naudascher 1979). Related by the common feature of shear-layer 
instability, natural oscillations are found in internal slit flows, groove flows, and 
channel expansions, as well as external flows involving bluff-body separation. 
Although i t  is certainly true that these various manifestations of oscillatory 
instability are outwardly similar, the extent to which they are amenable to  a common 
underlying theory remains an open question. 

In  this paper, we investigate by direct numerical simulation the flow of an 
incompressible fluid in a two-dimensional periodically grooved channel. In  $2, the 
full problem statement is given, and the numerical techniques used briefly described. 
Stable steady states for the grooved-channel flow are calculated in $3  and the 
properties of these flows discussed. In $4, the linear stability of the separated flows 
calculated in $3  is investigated by dircct numerical simulation, and a theory proposed 
for frequency selection based on excitation of stable Tollmien-Schlichting waves. The 
extent to which this theory applies to  other separated-flow instabilities is briefly 
discussed. Lastly, $5 shows that self-sustained oscillations result from the instability 
predicted in $4, and the transition to  oscillatory flow is demonstrated empirically to 
correspond to a regular Hopf bifurcation. In  Part 2 of this paper (Ghaddar, Magcn, 
Mikic & Patera 1985), we extend our subcritical results to the case of forced flow, 
and demonstrate that  excitation of' the flow a t  its natural frequency results in 
significant transport enhancement. 

2. Problem Formulation and Numerical Methods 

2.1. Gooerning equations 
The geometry to  be considered is the pcriodically grooved channel shown in figure 1 ,  
assumed infinite in extent in the streamwise x and spanwise z directions. The flow is 
assumed to be fully developed in x, and to be independent of spanwise co-ordinate 2. 
We have chosen the periodic channcll caonfiguration (rather than, say, an isolatcd 
groove in a boundary layer) not only hwause of our particular application (compact 
heat exchangers, cooling of electronic components), but also because pcriodicity and 
bounded domains allow minimal ambiguity in terms of boundary-caondition 
specification. 
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FIQURE 1 .  The geometry of the periodically grooved channel is described by the groove depth a, tho 
groove length 1, and the separation distance between grooves L, all non-dimensionalized with 
respect to the channel half-width h. All results presented are for flow which is fully developed in 
x, corresponding to an infinite number of grooves. 

To put the problem in non-dimensional form, we scale all velocities by $V,  where 
V is the cross-channel average velocity, 

h 

V = (2h)-l U ( X  = 0 ,  y, t )  dy, 

and all lengths by the channel half-width h. (Unless otherwise stated, all variables 
considered henceforth are assumed to  be non-dimensionalized in terms of V and h. )  
The governing equations for incompressible flow in the domain D can then be written 
as 

ut = uxw-V17+R-'V2u in D, ( la )  

V . u = O  i n D ,  (1  b)  

where u(x, t )  ( =  uli.+v#) is the velocity, l7 = p+!ju* u is the dynamic pressure, 
w = V x u is the vorticity, and R = %Vh/v is the Reynolds number, where v is the 
kinematic viscosity of the fluid. I n  addition to R, the flow is governed by the 
geometric parameters L, 1,  and a, respectively representing periodicity length, groove 
length, and groove depth. 

The fully developed boundary conditions for the velocity u(x, t )  are 

u(x, t )  = 0 on aD, ( 2 a )  

(2b )  
corresponding to no-slip and periodicity respectively. Here aD corresponds to  the 
boundary made up of the top and bottom walls of the channel, and m is an integer 
periodicity index that must be determined empirically (see SS3-5 below). For the 
pressure we require 

(3a) 

(3b)  

u ( z+mL,  Y, t )  = u(2, y, t ) ,  

n ( x ,  t )  = -nx(t) x+n'(x,  t ) ,  

n'(x+mL, y, t )  = Z7'(x,y, t ) ,  

where the term l7,(t) is the driving force for the flow, and is determined by the 
imposed flow-rate condition 

& = J 1  -1 u(x=O,y , t )dy=b.  (4) 
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Note that the linear pressure term in ( 3 a )  is consistent with periodicity of the 
velocity ( 2 b ) ,  as only the gradient of the pressure enters into (la). 

I n  addition to the full nonlinear problem described by (1)-(4), i t  is also of interest 
to  consider the linearized problem about a steady solution to the Navier-Stokes 
equations us(x) in which we assume solutions of the form 

u(x, t )  = us(x )  + € V ’ ( X ,  t )  ( E  -4 1 ) .  (5) 

Inserting (5) into ( I ) ,  and neglecting terms O(e2) and higher, gives the following linear 
equation for u’(x, t )  : 

(6a)  

v-v‘ = 0. ( 6 b )  

V;  = U, x a’+ V’ x t ~ , - V h ” +  R-l V 2 d ,  

The boundary conditions on the perturbation u’, I7’ are as in (2)-(3), but the flow- 
rate condition (4) is now replaced with 

Q‘ = I’ u’(x = 0 ,  y, t )  dy = 0 ,  
-1 

(7) 

corresponding to no net perturbation flow. As for the nonlinear problem, we require 
initial conditions on the velocity in order to complete the problem specification. 

For sufficiently large times, the solution of the initial-value problem (6) will 
approach the least stable mode of the eigcnvalue problem resulting from normal mode 
formulation of the same equation. I n  particular, the initial-value-problem result can 
be interpreted as 

v’(x,  t )  - exp (at) Re{B(x)exp (2niQt)) ( t +  a), (8) 

from which the growth rate a and frequency 52 of the most unstable mode can be 
inferred. It should be noted that, as implemented here, linear-theory direct simulation 
isolates only the least-stable mode of the system. 

2.2 .  Numerical methods 

The numerical approach followed here is that of direct simulation, in which 
initial-value-problem solvers are uscd in all aspects of the work. In  particular, 
steady-states, their linear stability, and nonlinear oscillations are all determined using 
the same basic initial-value code, with only the interpretation of the results depending 
on the particular physical phenomenon of interest (e.g. (8)). This approach has been 
used previously for solution of flow problems in simple geometries using spectral 
methods (Orszag & Patera 1983; Marcus 1984). 

We first describe the time-stepping method used, and subsequently discuss the 
associated spatial discretization. The time-stepping scheme is a primitive-variable 
fractional step method (Orszag & Patera 1983, Korczak & Patera 1985), in which the 
Navier-Stokes equations, ( 1 )  or ( 6 a ) .  are split into an explicit convective step 
(third-order Adams-Bashforth), a pressure step to impose incompressibility, ( 1  b )  or 
( 6 b ) ,  and an implicit (Crank-Nicolson) step for the viscous contributions. Numerical 
implementation of the constant-flow-rate condition, (4) or (7) ,  in the context of the 
primitive-variable scheme is done by a Green-function techniquc (Ghaddar, 
Karniadakis & Patera 1985). 

To solve the hyperbolic and elliptic equations generated by the time-stepping 
scheme described above, we use a spectral element spatial discretization ( Patera 
1984; Korczak & Patera 1985; Karniadakis, Bullister & Patera 1985), a high-order 
finite-element method that combines the generality of the finite-element method 
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(Strang & Fix 1973) with the accuracy of spectral techniques (Gottlieb & Orszag 
1977). In the isoparametric spectral element discretization, the domain is first broken 
down into a series of general quadrangular elements, and the dependent and 
independent (geometry) variables then represented as high-order elemental 
Lagrangian interpolants through Chebyshev collocation points. The convective 
terms in the governing equations are treated by (explicit) collocation, while the 
(implicit) pressure and diffusive co.ntributions are handled using variational projection 
operators. Our treatment of elliptic equations is similar to other high-order finite- 
element techniques, such as thep-type finite-element schemes (Babuska & Dorr 1981), 
and the global element method (Delves & Hall 1979). 

As regards accuracy, it has been shown for numerous problems (Patera 1984; 
Korczak & Patera 1985) that, for sufficiently smooth solutions, the spectral element 
discretization shares the exponential convergence rate of global spectral methods. 
The element decomposition allows for very flexible resolution and point distribution, 
often yielding solutions more accurate than corresponding global spectral results 
(Basdevant et al. 1985). Furthermore, unlike global spectral methods, the implemen- 
tation and efficiency of the spectral element method does not rely on simple 
geometry or specific expansions. For instance, efficiency in the elliptic solvers is 
achieved by the general procedure of static condensation (Przmieniecki 1963 ; 
Korczak & Patera 1985) which, with no restriction on geometry, gives operation 
counts competitive with corresponding low-order techniques (Patera 1985). In three 
space dimensions, conjugate gradient iteration is used to solve the implicit equations 
(Karniadakis, Bullister & Patera 1985). 

We give no further description of our numerical techniques here, as this can be 
found in detail in the references cited above. An example of the accuracy of the 
method as applied to simulation of Tollmien-Schlichting waves is given below. All 
results presented here have been confirmed to be convergent in both time-step and 
spatial degrees-of-freedom, and therefore all solutions discussed are believed to be 
accurate solutions of the Navier-Stokes equations. 

2.3. Tollmien-Schlichting waves 

We note that, for the choice a = 0 (no groove), the general problem described in $2.1 
reduces to that of plane Poiseuille flow. Although this ‘simple’ problem may appear 
to be irrelevant to the case of finite a, this is, in fact, not the case, and we therefore 
briefly discuss the stability properties of this flow. As is well known, a solution to 
the plane-Poiseuille-flow problem is the parabolic profile, us = (1 - y2) 2. The linear 
stability of this flow with respect to infinitesimal disturbances of the form 

u’(x,  t )  = exp (d) Re{v^(y) exp (iaz-2niQt)) (9a) 

(Tollmien-Schlichting waves of wavelength 2x/cc), is governed by the classical 
Orr-Sommerfeld equation (Drazin & Reid 1981), the least-stable (wall) mode of which 
we denote 

9(aTS, QT,, a,  R,  = O. (9b) 

Solution of (9b) using, for instance, spectral methods (Orszag 1971), gives the critical 
values for the onset of instability (cr > 0) of R,,, TS = 5772, a,,, TS = 1.02. 

Therefore, for the Reynolds numbers of interest in this paper, 0 < R < 2000, the 
parabolic Poiseuille profile is linearly stable (cr < 0). Furthermore, i t  has been shown 
that, even for Jinite-amplitude (two-dimensional) disturbances, the parabolic profile 
is still stable for this Reynolds-number range, nonlinear instability occurring only 
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FIGURE 2. A plot of the spectral element mesh used for the direct simulations of Tollmien-Schlichting 
channel modes. The darker lines correspond to spectral element boundaries, whereas the lighter 
lines represent the Chebyshev grids internal to  a given element. The grouping of points near the 
bottom wall of the channel is in preparation for the presence of a groove. 
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for R > 3000 (Herbert 1976). Thus, for the parameters of the present investigation, 
we conclude that, in the absence of a groove, no channel instabilities or unsteadiness 
should occur. 

As an example of both the initial-value-problem philosophy, and the accuracy of 
our numerical techniques, we consider the decay of the least-stable Tollmien- 
Schlichting wave in a channel of imposed periodicity length. In particular, we perform 
a direct simulation of ( 5 )  with us = (1 -y2) 2,  starting with the exact eigenfunction 
for the least-stable Orr-Sommerfeld mode from (9) as the initial condition u'(x,  t = 0). 
The first test case is R = 525, L = 6.666 (m = l ) ,  for which the least-stable mode 
corresponds to a = 0.9424. The mesh used is shown in figure 2, where the darker lines 
indicate element boundaries, and the lighter lines are the Chebyshev grids internal 
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(4 
FIGURE 4. A plot of the perturbation streamlines a t  (a) t = 0, and (b) t = T, for the channel 
simulations at  R = 525. The fact that the simulation almost exactly honours the initial (exact) 
eigenfunction shape is indicative of an accurate numerical solution, with minimal dispersion errors. 
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FIGURE 5. A plot of the high-resolution spectral element mesh used for the channel simulations at  
R = 1000. Finer resolution is required at these higher Reynolds numbers in order both to reduce 
numerical diffusion effects, and to accurately resolve the thinner internal (critical) and boundary 
layers. 

to individual elements. The grouping of elements near the bottom wall is in 
preparation for the presence of a groove (and associated free shear layer). 

We plot in figure 3 the numerical solution for the perturbation velocity u' as a 
function of time at a representative point in the flow domain. On the basis of this 
curve and the interpretation (8), the values of the growth rate u and frequency 52 
can be read off as u = -0.070, B = 0.055, in good agreement with the exact values 
(obtained from (9)) of uTS = -0.0695, QTS = 0.0546. In  figure 4 we plot the 
perturbation streamlines at t = 0 (exact), and after one time period of simulation, 
t = T(  = l/a) ; there is virtually no change in shape, indicating an  accurate numerical 
solution and minimal numerical dispersion. 

We now repeat the above test for the slightly more difficult case of R = 1000 (all 
other parameters unchanged), with the higher-resolution mesh shown in figure 5.  I n  
figure 6 we plot the perturbation velocity as a function of time, from which we infer 
u = -0.044, 52 = 0.051, again in good agreement with the exact values from (9), 
uTS = -0.0459, QTS = 0.0503. It is therefore clear that, at these Reynolds numbers, 



106 N .  K.  Ghaddar, K .  Z .  Korczak, B .  B .  Mikic and A .  T .  Patera 

0.04 

0.03 

0.02 

0.01 

U P  

0 

-0.01 

-0.02 

-0.03 

- 0.04 

-0.05 

0 10 20 30 40 50 60 70 80 90 100 110 

t 

FIQURE 6. A plot of the perturbation velocity u' as a function of time at a typical point in the channel 
domain shown in figure 5, obtained by direct simulation of the linearized Navier-Stokes equations 
at R = 1OOO. The initial condition for the simulation is taken to be the Orr-Sommerfeld mode at 
R = 1000 with largest growth rate gTS. 

our numerical methods are sufficiently accurate to handle the relatively delicate test 
case of a decaying Tollmien-Schlichting wave. As the instability to  be discussed below 
($4) involves the interaction of a shear layer and a Tollmien-Schlichting wave, 
accurate solution of the plane Poiseuille problem is a minimum requirement for any 
numerical scheme purporting to simulate the full grooved-channel flow. 

3. Steady-state flows 
I n  this section we consider flows that, started from arbitrary initial conditions, 

converge to a stable steady state. I n  effect, the results presented here are obtained 
by iteration of the spectral element discretization of the Navier-Stokes equations ( 1 )  
to a converged (in time) solution. Our direct simulations are not capable of finding 
unstable steady states, and we therefore can draw no conclusions concerning their 
possible existence. The base geometry used in this and the remaining sections 
corresponds to the choice of parameters L = 6.6666, I = 2.2222, a = 1.1111;  the 
computational domain and a typical spectral element mesh are shown in figure 7. 
Note that we have included only one groove in the domain, equivalent to the choice 
of m= 1 in (2b)  and ( 3 b ) .  

An example of a steady flow at a relatively low Reynolds number, R = 225, is shown 
in figures 8 (a) ,  ( b ) ,  and ( c )  in the form of streamline, vorticity and pressure contours 
respectively. Our pictures are qualitatively the same as previous steady simulations 
(Pan & Acrivos 1967; Mehta & Lavan 1969; Gatski & Grosch 1984). The formation 
of a (weak) shear layer a t  the groove edge, the characteristic (low) high pressure a t  
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FIGURE 7. The computational domain and a typical spectral element mesh for the grooved-channel 
calculations in the base geometry L = 6.6666, 2 = 2.2222, a = 1 .11  11. Points are crowded near the 
groove lip so as to accurately resolve the cavity shear layer. 

(separation) impingement, and the effcct of recirculation on the vorticity distribution 
in the groove, are all consistent with physical intuition. Note also the almost complete 
lack of communication between the groove and channel flows, with the latter being 
very close to a parabolic plane-Poiseuille-flow profile. 

We now repeat the above calculation at a larger Reynolds number, R = 800, with 
the resulting streamline, vorticity, and pressure plots shown in figures 9(a), ( b )  and 
(c)  respectively. The most noticeable change from the R = 225 case is the sharper 
shear layer, as evinced by rapid vorticity variation across the groove lip. One can 
also see at this higher Reynolds number the formation of secondary vortices in the 
corners of the grooves (Pan 6 Acrivos 1967; Mehta & Lavan 1969; Moffatt 1964). 
Although of interest in their own right, these (very weak) vortices do not appear to 
be dynamically significant, and we have not expended the degrees-of-freedom 
required to  resolve them. 

I n  general, for these subcritical (steady-flow) Reynolds numbers, it is found that, 
for specified flow rate (4), the pressure drop is less than the corresponding quantity 
for plane Poiseuille flow (i.e. no groove). In  particular, we define the quantity @ to  
be the ratio of the (time-mean) pressure gradient nz to the corresponding quantity 
for plane Poiseuille flow 2 / R ,  @ = inz R. For these subcritical Reynolds numbers 
@ N 0.97, thus showing that the effect of the addition of a groove to a plane channel 
is one of drag reduction and decreased dissipation. This is due to stress relaxation and 
lack of significant momentum flux at the groove lip, and is consistent with 
experimental observations (Gharib 1984). We discuss dissipation further in 55, in the 
context of supercritical (oscillatory) flows. 

The last point that must be addressed concerning these steady flows is their 
stability with respect to subharmonic disturbances. I n  using the computational 
domain shown in figure 7, we implicitly assume that the periodicity index m in ( 2 6 ) .  
( 3 b )  is unity. The only way to be certain that these m = 1 solutions are physically 
realizable is to  simulate the flow in multi-groove domains (computationally a very 
expensive procedure), and verify that the L-periodic solutions do, in fact, persist. 
I n  figure 10 we show the spectral element mesh for a m = 2 calculation, and in 
figure 11 we show the resulting streamlines a t  a Reynolds number of 225. Comparing 
figure 11 with figure 8 ( a )  it  is clear that, for this particular case, the single-groove 
calculations are justified. 
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( c )  

FIGURE 8. Plots of the ( a )  streamline, ( b )  I orticity, and ( c )  pressure contours for steady flow at 
R = 225 in the base geometry. These picture.; are consistent with past simulations and visualizations 
of groove flows. 

4. Linear stability theory 
4.1. General stability characteristics 

We now consider the linear stabilitx of the steady flows presented in the previous 
section. Of interest is the determination of the critical Reynolds number for the 
onset of unsteadiness, as well as the frequency of oscillation of the corresponding un- 
stable mode. Our linear-theory calculations procecd by dircct simulation of (6)-(7), 
with us given by the numerical steady states (perforce stable) calculated in $3. All 
results in the current subsection are for the base geometry L = 6.6666, 1 = 2.2222, 
a = 1 . 1 1 1 1 .  

A typical (time-asymptotic) result ofa dircct simulation is shown in figure 12, which 
is a plot of the perturbation velocity u' as a function of time for a Reynolds number 
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(C) 

FIGURE 9. Plots of the (a) streamline, (b) vorticity, and (c) pressure contours for steady flow at 
R = 800 in the base geometry. At this higher Reynolds number, the cavity shear layer is more 
pronounced than at R = 225. 

of R = 525. Interpretation of the solution according to  (8) gives a growth rate and 
frequency of u = -0.043, D = 0.142 respectively. As might be expected from the 
geometry and flow conditions, the least-stable mode is seen to  be oscillatory in nature, 
consistent with subsequent overstability and self-sustained oscillations. 

On the basis of results such as those in figure 12, we plot in figure 13 ( a )  the (u, 0)- 
trajectory of the least-stable mode of the grooved-channel flow, and in figure 13(b) 
the dependence of growth rate u on Reynolds number R. Extrapolation of the 
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FIGURE 10. A plot of the computational domain and spectral element mesh for a m  = 2 (two-groove) 
calculation (base geometry). Periodicity is now required only on the interval ZL, rather than the 
more restrictive condition of L-periodicity imposed on single-groove meshes such as that  shown 
in figure 7. 

I I 

FIGURE 1 1 .  A plot of the streamlines of the steady flow for the two-groove domain shown in 
figure 10 at R = 225. The similarity of this picture to  tha t  in figure 8(a )  indicates that, for this 
particular flow, our L-periodic solutions are stable to subharmonic (two-dimensional) disturbances. 
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FIGURE 12. A plot of the perturbation vthci ty  u’ as a funrtion of time at a typical point in the 
grooved-channel domain shown in figure 7 .  obtained by direct simulation of the Navier-Stokes 
equations at R = 525 linearized about a numerically calculated steady state. The decay rate and 
frequency of the least-stable grooved-channd mode is readily inferred from the (time-asymptotic) 
behaviour shown here. 
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FIGURE 13. (a) A plot ofthe (v, Q)-trajectory of the least-stable grooved-channel mode, parametrized 
by the Reynolds number R (base geometry). It is clear that, at a Reynolds number on the order 
of 1O00, the least-stable eigenvalue of the linearized system will pass from the left- to the right-hand 
plane, and self-sustained flow oscillations will result. (b) A plot of the decay rate of the least-stable 
grooved-channel mode as a function of Reynolds number R (base geometry). Linear extrapolation 
of the high-Reynolds-number data points suggests a critical Reynolds number R, of approximately 
900. This estimate will be verified and refined in $5. 
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FIGURE 14. A plot of the perturbation streamlines of the least-stable grooved-channel mode at 
R = 525 for various times during the flow cycle, 0 < t < T (base geometry). The channel region 
of the flow closely resembles a L/2-periodic Tollmien-Schlichting wave, as can be seen from a 
comparison with figure 4. 

high-Reynolds-number data points in figure 13 ( b )  clearly predicts instability (a > 0 ) ,  
with a critical Reynolds number R, of roughly 900. This result will be confirmed and 
refined in our discussion of nonlinear oscillations in the next section. (Note our present 
methods can only find stable steady states, and therefore we can formally perform 
linear-stability calculations only for stable flows.) 

To determine the nature of the hydrodynamic instability reflected in figure 13, we 
plot in figure 14 the perturbation streamlines for R = 525 at several times during the 
flow cycle, 0 < t < T. (Although the analysis here is for a stable mode, it is clear that  
the physical features described are similar to their unstable counterparts at slightly 
higher Reynolds number.) Note that, a t  t = T, the form of the perturbation is almost 
identical with that at t = 0, indicating that we have, indeed, reached a time- 
asymptotic state in which the solution corresponds to a purified least-stable mode 
(e.g. (8)). What is most striking in figure 14 is that, in the channel part of the domain, 
the grooved-channel mode very closely resembles a travelling Tollmien-Schlichting 
wave (see figure 4), particularly in the region of the flow away from the immediate 
vicinity of the groove. An even more dramatic comparison between the grooved- 
channel modes and Tollmien-Schlichting waves is given in the next subsection. 

' 
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FIGURE 15. A plot of the total vorticity (perturbation field arbitrarily scaled to correspond to 
maximum velocity of 0.1) for the grooved-channel flow at R = 525 for various times during the 
flow cycle, 0 < t < T (base geometry). The waviness of the cavity shear layer is (loosely) suggestive 
of Kelvin-Helmholtz instability. 

It is clear that  the Tollmicn-Schlichting waves seen in figure 14 cannot be directly 
responsible for the grooved-channel instability, given the disparity between the linear 
critical Reynolds number of approximately 900 in figure 13, and the corresponding 
quantity of R,,TS = 5772 for plane Poiseuille flow. (Our numerical tests on decaying 
TollmienSchlichting waves at R = 1000 in $2.3 should be ample proof that the 
instabilities seen here are not the result of inaccurate channel-flow simulation.) I n  
order to isolate the mechanism by which the groove region destabilizes the flow, we 
plot in figure 15 contours of the total vorticity 0, + ew’, a t  various times during the 
flow cycle, 0 < t < T. The amplitude of the perturbation 8 is (arbitrarily) chosen to 
correspond to a maximum perturbation velocity of roughly 10%. As might be 
expected, there is significant waviness and ‘roll-up’ of the vortex sheet a t  the groove 
lip (as compared with the steady case, figure 9b), strongly suggestive of similar 
patterns observed in Kelvin-Helmholtz instability of free shear layers (e.g. Michalke 
1964). In  summary, i t  is clear from figures 14-15 that the grooved-channel instability 
is a complex interaction between a destabilizing cavity shear layer, and ‘stable’ 
Tollmien-Schlichting waves in the channel interior. 
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4.2. Frequency selection - geometric dependence 

In this section, we present a very simple theory for predicting the frequency 52 of 
the least-stable mode of a grooved-channel flow. Understanding the linear frequency 
selection process can be important for several reasons. First, the behaviour of forced 
grooved-channel flow is easily predicted once the characteristic response of the 
unforced flow is understood ; see Part 2 of this paper (Ghaddar, Magen, Mikic & Patera 
1985) for an application of resonant forcing to heat-transfer enhancement. Secondly, 
the frequency of the nonlinear (supercritical) oscillations is typically only slightly 
shifted from that of the originating linear instability, and we can therefore use linear 
analysis to predict less tractable nonlinear behaviour. 

From the picturcs and arguments presented in the previous section, it appears 
reasonable to interpret the grooved-ehannel instability process as free-shear-layer 
destabilization of erstwhile stable Tollmien-Schliehting waves. If this were the case, 
it also seems plausible that the unstable part of the flow, the shear layer, would allow 
the stable, ‘massivc’ part of the flow, the Orr-Sommerfeld mode, dictate the 
frequency of their coherent oscillations, in this way minimizing the resistive 
component of the system. Equivalently, one can view the instability process as 
broadband shear-layer instability, with the least-stable mode of the ‘coupled ’ system 
then corresponding to the frequency a t  which the channel modes are least damped. 

These rather simple frequency-selection scenarios, which predict 52 = QTS, turn 
out, in fact, to be correct. To illustrate how the theory is implemented, we consider 
the particular case of the base geometry L = 6.6666, 1 = 2.2222, a = 1.1111, a t  
R = 525, for which the linear-theory direct-simulation results are given in figures 14 
and 15. In order to be able to calculate QTs from (9), we must know the correct 
wavcnumber a of the Tollmien-Schlichting wave associated with the grooved-channel 
mode. Although the boundary condition of L-periodicity (2 b )  restricts the wave- 
number to be of the form 01 = 2nnlL. n integer, the value of n is not known a priori. 
We therefore resort to the direct-simulation results, figure 14, from which we deduce 
that n = 2, and hence a = 1.885. Solution of (9) then gives Q,, = 0.146, in excellent 
agreement with the simulation result for the grooved channel 52 = 0.141. 

To givc an indication of the large effect of geometry on frequency selection, we now 
consider the case of L = 5.185,l = 2.2222, a = 1 . 1 1  11 ,  still a t  R = 525. This geometry 
is identical to the base geometry, exccpt for a 20 7’ decrease in periodicity length L. 
To determine n for this new geometry, we plot in figure 16 the perturbation 
streamlines a t  several times during the flow cycle, analogous to figure 14 for 
L = 6.6666. (Note once again the remarkable resemblance of the grooved-channel 
mode to the Tollmien-Schlichting wave in figure 4.) From figure 16 i t  is clear that 
for this shorter geometry n = 1, whic.h in turn gives a wavenumber of 01 = 1.211 for 
the associated Tollmien-Schlichting wave. With thesc parameters, (9) gives 
Q,, = 0.081, which is, once again, in good agreement with the direct-simulation 
rcsults for the grooved channel, 0 = 0.083. Because of the two-wave (n = 2) to  
onc-wave ( n  = 1) transition, a slight decrease in domain length ( L  = 6.6666 to 
L = 5.185) is seen to  result in a large change in frequency (52 = 0.141 to 52 = 0.083). 
Although i t  might appear that this geometric sensitivity is forced on the solution by 
the single-groove ( m  = 1 )  simulations, this does not appear to be the case. Two-groove 
(m = 2) simulations for these geometries indicate that, as for the steady flow in 
figure 1 1 ,  our L-periodic solutions persist despite the freedom of a larger domain. 

The fact that we can casily vary the geometry of the grooved channel allows us 
to verify the Tollmien-Sohlichting wave theory in a fairly exhaustive fashion. In  
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FIGURE 16. A plot of the perturbation streamlines of the least-stable grooved-channel mode 
at R = 525 for various times during the flow cycle, 0 < t < T, for the geometry L = 5.185, 
1 = 2.2222, a = 1 .11  1 1 .  The resemblance of the channel region of the flow to a Tollmien-Schlichting 
wave is even more striking for this n = 1 (one-wave) solution than for the two-wave solution in 
figure 14. 

figure 17 we collapse all the frequency data from numerous geometries on the 
dispersion relation for the least-stable wall mode of the Orr-Sommerfeld equation 
(9), in which each data point is the result of an analysis similar to that described in 
the previous two paragraphs. For this range of parameters, the theory is seen to be 
virtually exact. In table 1 we list the various geometries appearing in figure 17, 
grouped into three categories based on common values of 1. Independent tests have 
verified that the frequency is not a function of groove depth a and we have therefore 
only included variations in L and 1. 

The remaining point to be resolved is the possibility of a priori prediction of n,  
the number of Tollmien-Schlichting waves per periodicity length. In figure 18, we 
plot frequency a as a function of L/1, for three values of 1. (It should be noted that, 
for very large values of 1, the theory presented here certainly breaks down, as the 
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FIGURE 17. A plot of the frequencies 52 for the various geometries studied iiersus the wavenumber 
of the associated Tollmien-Schlichting channel waves a at a Reynolds number of R = 525. All the 
points are seen to fall almost exactly on the Orr-Sommerfeld dispersion relation, indicating that 
the frequency-selection process is ultimately dictated by the more stable ‘component’ of the system, 
the channel flow. Data is grouped by mi for geometries with 1 = 1.5, Oi for geometries with 2 = 2.22, 
and A, for geometries with 1 = 2.77; the subscripts refer to variations in L (for given l ) ,  and are 
explained in table 1.  

shear layer will in this case re-attach before the downstream groove face, resulting 
in a very different, grossly non-parallel, flow structure. For this reason, we restrict 
ourselves to small and moderate 1, corresponding to ‘open ’ cavities.) We first consider 
the case of 1 = 1.5, which is typical of our results for small 1. In  this small-groove limit, 
there is little groove/channel interaction, and the transition from one wave to 
two waves is governed primarily by the stability of the channel flow. I n  other words, 
the two-wave transition in figure 18 can be shown to roughly correspond to 
maximization of uTS (a = 2nn/L) with respect to n. It should also be noted that, for 
this low value of 1, the decay rates of the grooved-channel modes, a, are quite close 
to  those of the associated Tollmien-Schlichting waves uTS, suggesting that the effect 
of the groove on the stability of the flow is relatively small. 

At larger values of 1 (1 = 2.22, 2.77 in figure 18), the transition from one wave to 
two waves is roughly correlated with a critical value of L/1. For these larger grooves 
the Tollmien-Schlichting wave chosen is often not the least stable mode consistent 
with L-periodicity, indicating that an important factor now is geometric compati- 
bility between the groove and channel oscillations. Also, the decay rates of the 
grooved-channel modes are now much less than the corresponding plane-channel 
modes, evidence of strong interaction between the free shear layer and the Tollmien- 
Schlichting waves in the channel. For instance, for the base geometry, the n = 1 
Tollmien-Schlichting wave has a decay rate cTS = -0.070, the n = 2 wave (which 



Numerical investigation of incompressible flow in grooved channels 117 

i 1 L a n 

0 1 1.5 2.5 0.19 1 
2 3.0 0.154 1 
3 6.0 0.065 1 
4 7.5 0.046 1 12 
5 8.5 0.108 2 

0 1 2.22 4.44 0.1 1 
2 5.185 0.083 1 
3 6.0 0.064 1 
4 6.4 0.059 1 
5 6.66 0.142 2 
6 7.77 0.12 2 

n 1 2.77 5.54 0.07 1 
2 6.66 0.056 1 

4 8.33 0.109 2 
5 9.72 0.089 2 

3 7.77 0.118 21 1 

TABLE 1 .  A table listing the various geometries represented in figures 17 and 18, giving L, 1,  a (at 
R = 525) and n for each geometry. The groove depth in all cases is a = 1 . 1 1  1 1 .  

is the case actually realized in the grooved channel, i.e. the associated wave) has decay 
rate crTS = -0.12, while the grooved-channel mode has decay rate cr = -0.043. Note 
this is not to say that the stability of the channel modes is unimportant. For instance, 
for the geometry L = 5.185, 1 = 2.2222, a = 1.1111, we find that cr = -0.021, with 
crTS (of the associated Tollmien-Schlichting wave) = -0.0629. I n  comparing these 
numbers to  those for the base geometry, i t  is reasonable to  conclude that at least part 
of the decreased stability of the L = 5.185 geometry is due to  the slower decay of 
its associated Tollmien-Schlichting waves. In  summary, the determination of the 
wavenumber (spatial scale) of the linear modes is a complicated function of shear-layer 
and channel-mode interaction; however, once a is known, the channel dispersion 
relation governs the frequency of oscillation. 

I n  our discussion of how the wave index n is selected by the system, we have raised 
the issue of relative stability and geometric dependence of Rc. I n  this paper, we do 
not attempt a comprehensive study of this aspect of the stability problem, having 
rather focused on the frequency characteristics. It is evident from the above results 
that  a shear-layer/Tollmien-Schlichting model for criticality could be constructed 
analogous to the current frequency model. However, it  is also clear that  any theory 
for stability would be more complicated than a theory for frequency, in that 
determination of the growth rates of the grooved-channel system appears to involve 
much more intimate coupling between the shear layer and Tollmien-Schlichting 
waves than determination of frequency, which we have shown is largely (but not 
entirely) governed by the ‘channel side’ of the flow. I n  particular, a stability theory 
would certainly require a more sophisticated analysis of the shear-layer structure than 
the rather cursory treatment given in 54.1. 

We briefly discuss to what extent the frequency and stability characteristics 
described here are observed experimentally. Since no experimental results exist for 
the same conditions we have studied (with the exception of heat-transfer data related 
to Part 2 of this paper (Ghaddar, Greiner, Patera & Mikic 1985; Greiner 1985)), our 
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FIGURE 18. A plot of the frequency a as a function of LIl, at a Reynolds number of R = 525, for 
three values of 1 ;  0,  I = 1.5; 0, 2.22; A, 2.77. The discrete jumps in frequency correspond to 
transitions from one-wave to two-wave solutions. 

comparisons are of necessity qualitative. First, we find that the groove depth is 
irrelevant to  frequency determination, in agreement with the experimental results 
for boundary-layer flow over grooves (Sarohia 1977). Secondly, we find that, for small 
grooves (i.e. small I ) ,  the groove does not significantly affect the stability of the flow, 
but that  the flow experiences decreasing stability with increasing I ;  this, too, is seen 
in boundary-layer groove flows (Sarohia 1977). Lastly, the discontinuous frequency 
curves shown in figure 18 are observed in a large number of oscillatory separated flows 
(Sarohia 1977; Rockwell & Naudascher 1979), in which variation of a geometric 
parameter results in discrete frequency transitions. 

Although our (unstable) shear-layrr/(stable) channel-mode theory does predict a 
number of features observed experimentally in a variety of impinging shear-layer 
flows, this is certainly not conclusive proof that the model is capturing all the relevant 
physics. However, for isolated grooves, boundary-layer flows, slit flows, even channel 
expansions (where natural oscillations have been numerically predicted ; Osswald, 
Ghia & Ghia 1983), i t  seems possible that our theory, appropriately modified for flow 
and boundary conditions, would still apply. Further numerical tests are currently 
under way to determine to what extent the unstable shear-layer/stable outer flow 
decomposition is applicable to these more general groove-like flows. One thing that 
is clear, at least for the current geometry, is that the use of concepts such as 
' Biot-Savart feedback ' to explain incompressible oscillations (Rockwell 1982) is, a t  
best, misleading, and certainly an incomplete description of the kinds of phenomena 
described in this paper. Furthermore, i t  would appear that  any theory for frequency 
for these flows must include the effect of the outer flow, which is a t  variance with 
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most current theories (Rockwell & Naudasher 1979) based solely on shear-layer 
considerations. 

5. Self-sustained oscillations 
We now consider the nonlinear evolution of the linear instability predicted in the 

last section. We are interested in refining the value of R, predicted by linear theory 
(figure 13 b ) ,  determining the (nonlinear) frequency of oscillation 8,, predicting the 
dependence of the amplitude of the oscillations on degree of criticality R-R,,  and 
understanding the effect of natural oscillation on global flow properties such as 
dissipation. All results are for the base geometry L = 6.6666, I = 2.2222, a = 1.1 11 1,  
and are obtained by direct simulation of the (nonlinear) Navier-Stokes equations (1)  
on the high-resolution spectral element mesh shown in figure 19. 

Typical simulation results are shown in figure 20(a) and ( b ) ,  which are plots of the 
(total, not perturbation) streamwise velocity u as a function of time for Reynolds 
numbers of R = 800 and 1200 respectively. In figure 20(a) we see decay to steady 
state, as predicted by the linear-theory results of the last section, figure 13(b). 
However, in figure 20(b), at R = 1200, it is clear that the stable flow is now not steady, 
but rather a limit cycle corresponding to a nonlinear self-sustained flow oscillation. 
On the basis of results such as those in figure 20 for Reynolds numbers in the range 
800 < R < 1200, the critical Reynolds number for the onset of unsteadiness is found 
to be R, = 975, in reasonable agreement with the linear extrapolation of the 
linear-theory results in figure 13. 

The primary frequency of the nonlinear oscillations 8, is, as in the linear case, quite 
insensitive to Reynolds number R over the narrow range of Reynolds numbers 
investigated here. For our base geometry, we find from figure 20(b )  that 0, = 0.141, 
which is very close to the frequency of the originating linear mode (see $4) of 
Q = 0.142. Thus, at least for small amplitudes, it is clear that the linear frequency 
theory developed in $3, is, indeed, relevant to the case of self-sustained nonlinear 
oscillations. This has been verified for geometries other than the base case presented 
here. 

To understand the nature of the nonlinear oscillations, we plot in figures 21, 22, 
and 23 the streamline, vorticity, and pressure contours respectively of the flow 
oscillations at R = 1200 for various times durirlg the flow cycle, 0 < t < T ( = l/Q,). 
As in the case of the linear modes, we see that the nonlinear oscillations correspond 
to intense shear-layer activity at the groove lip, which in turn drives a travelling-wave 
disturbance in the channel interior. The vortex roll-up and pressure signature at the 
cavity edge are, once again, suggestive of classical Kelvin-Helmholtz instability. 

To see more clearly the form of the travelling-wave disturbance in the channel, we 
go into the wave frame of reference, 2’ = 2-c t  (u’ = u-c) ,  y’ = y (v’ = v) ,  t‘ = t ,  
where c = 2nQn/a is the phase speed of the channel wave. Here a is the primary 
wavenumber of the nonlinear channel disturbance a = 2nn/L, where n is the non- 
linear version of the wave index discussed in $4.2. Inspection of figure 23 (say) reveals 
a two-wave ( n  = 2) solution, consistent with the structure of the least-stable linear 
subcritical mode for this geometry (see figure 14). In figure 24, we plot the streamlines 
of the flow at R = 1200 in the wave frame in the channel part of the domain at  several 
times during the flow cycle. First, note that the flow is, indeed, roughly invariant 
in the proposed wave frame (with the exception of the immediate vicinity of the 
groove), proof of the travelling-wave nature of the channel solution. Second, the 
grooved-channel travelling wave is seen to closely resemble a nonlinear Tollmien- 
Schlichting wave (Herbert 1976; figure 1 in Orszag & Patera 1983), indicating that 
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FIGURE 19. The high-resolution spectral element mesh used for simulation of supercritical flows. 
All results are for the base geometry ( L  = 6.6666, 1 = 2.2222, a = 1.1111) shown here. 
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FIGURE 20. A plot of the velocity u as a function of time at  a typical point in the flow domain 
shown in figure 19, obtained by direct numerical simulation of the NavierStokes equations (a) 
Reynolds number R = 800; the flow is seen to approach a stable steady state. (b) R = 1200; the 
stable time-asymptotic flow is now not steady but, rather, a limit cycle of frequency 9, = 0.141. 
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FIGURE 21. A plot of the streamlines of the self-sustained flow oscillation at R = 1200 
for various times during the flow cycle, 0 < t < T (base geometry). 

the shear-layer/channel-flow interpretation of the flow does, in fact, extend to the 
nonlinear problem. 

We now turn to an investigation of more global measures of the self-sustained 
oscillations. To determine the dependence of the oscillation amplitude on degree of 
criticality, we define a pointwise amplitude parameter, A,(x) = max, lu(x, t ) - E ( x ) ( ,  
where an overbar denotes a time average. In figure 25, we plot this amplitude 
parameter at a typical point in the flow domain, as a function of Reynolds number 
R. The curve suggests a square-root dependence, 

A ,  N c(R-R,); (R+R,) (10) 
( c  a constant), behaviour typically associated with a regular Hopf bifurcation (Drazin 
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FIQURE 22. A plot of the vorticity contours of the self-sustained flow oscillation at R = 1200 for 
various times during the flow cycle, 0 < 1 < T. Note the waviness and roll-up patterns in the free 
shear layer at the cavity edge. 

& Reid 1981). To motivate this behaviour for our particular system, we begin with 
a Landau amplitude equation (Landau & Lifshitz 1959; Drazin & Reid 1981) 

A, = ( o + 2 d 2 ) A - y A J A J 2 +  ..., ( 1 1 4  

where A can be thought of as the amplitude of the least-stable mode of the linearized 
system (see §4), and (o+ 2niS2) the corresponding eigenvalue (see figure 13a). Upon 
multiplying ( l l a )  by A* (complex conjugate) and taking the real part, we arrive at 

M; = ~ J A P - Y ~ I A I ~ ,  (11b) 

where yr is the real part of the Landau constant y. From figure 13 ( b )  it appears that, 
for our particular system, cr - c(R-  R,) as R+ R,. If we then assume that yF > 0, 
we find that (116)  predicts equilibria of the form IAl - c (R-R,) i ,  from which the 
pointwise dependence (10) then follows. 

To determine more precisely the extent to  which (10) is realized for our flow, we 
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FIGURE 23. A plot of the pressure contours of the self-sustained flow oscillation at R = 1200 for 
various times during the flow cycle, 0 < t < T. Note the propagating pressure pulse across the 
cavity shear layer (correlated with the streamline pattern in figure 21), suggestive of shear-layer 
instability. The two-wave nature of the channel solution can easily be seen in the pressure patterns. 

have done a least-squares fit on In A ,  = a In (R- R,) + b (parameters a ,  b )  for the 
particular point in the flow domain corresponding to  figure 25. This analysis gives 
a = 0.48275, b = -5.69392, with a correlation coefficient (for In A,, In ( R - R , ) )  of 
0.99961. This is strong evidence in support of the square-root dependence in (10). 
We have plotted the result of this fit on figure 25, where it is seen that, as expected, 
the agreement is quite good. 

Thus, we have shown numerically that the self-sustained groove oscillations 
observed experimentally are the result of a regular Hopf bifurcation, corresponding 
to  simple crossing (figure 13b) of a pair of complex-conjugate eigenvalues from the 
left- to right-hand stability plane (figure 13a). In  obtaining this result we have, of 
course, neither derived not solved the Landau equation ( 1 1 ) .  The purpose of 
presenting the Landau arguments is to  show how direct simulation even of 
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FIGURE 24. A plot of the streamlines in the wave frame, x' = x-c t ,  y' = y, t' = t ,  where c = 2xQ,/a 
is the phase speed of the associated channel wave, c = 0.47. (This large phase speed for a wall mode 
is due to the relatively low Reynolds number of the flow.) The flow is, in fact, steady in the proposed 
wave frame, and closely resembles the finite-amplitude secondary flows seen in plane Poiseuille flow. 

complicated flows can be analysed and interpreted in the framework of classical 
stability theory, in this way extending the theory to a much broader class of flow 
problems. 

Lastly, we reconsider the effect of groove addition on dissipation and drag in a 
plane channel. In  figure 26, we plot the non-dimensional pressure gradient ratio 
@ = R over the range of Reynolds numbers 800 < R < 1200. As discussed in $3 ,  
for subcritical R, 0 is less than unity and roughly constant a t  C? = 0.973, owing to  
stress relaxation and negligible momentum flux a t  the groove lip. Slightly above 
R = R,, however, the Reynolds stress due to flow oscillation overtakes the stress 
relaxation effect, and C? increases above unity. Furthermore, i t  is seen that 
@ - c(R - RJ, R+ R,, which is consistent with the square-root amplitude dependence 
seen in figure 25, and the fact that the Reynolds-stress term responsible for the 
increased drag is quadratic in amplitude. Thus, as might be expected, the occurrence 
of natural flow oscillations is seen to result in significant increased drag and 
dissipation. 
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FIQURE 25. A plot of the amplitude of the self-sustained oscillations aa a function of Reynolds 
number R. Also plotted is the least-squares fit to a square-root dependence, the good agreement 
indicative of a regular Hopf bifurcation. 

The close relationship of the linear and nonlinear grooved-channel disturbances to 
their plane channel (TollmienSchlichting) counterparts, suggests that the final 
transition process in these grooved-channel flows may be quite similar to the 
three-dimensional secondary instability phenomenon seen in plane Poiseuille flow 
(Orszag & Patera 1983). Future work will address the three-dimensional transition 
problem for flow in grooved channels (Ghaddar & Patera 1985), as well as determine 
the extent to which the stability and frequency theories presented here for groove 
flows can be extended to more general geometries. 
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